课程咨询
托福培训

扫码免费领资料

内含托福全科备考资料

更有免费水平测试及备考规划

托福培训

扫码关注掌握一手留学资讯

回复XDF免费水平测试

托福听力背景知识:生物膜

2017-04-17 11:13:07来源:新东方在线整理

  4月15日托福听力中考到关于生物膜的内容,为了帮助大家熟悉2017年4月15日托福听力考试内容,新东方在线托福网为大家带来托福听力背景知识:生物膜一文,希望对大家托福备考有所帮助。更多精彩尽请关注2017年4月15日托福考情回顾总结http://toefl.koolearn.com)!

  From Wikipedia, the free encyclopedia

  For biographic motion picture, see Biographical film.

  A biofilm is any group of microorganisms in which cells stick to each other and often these cells adhere to a surface. These adherent cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS). Biofilm extracellular polymeric substance, which is also referred to as slime (although not everything described as slime is a biofilm), is a polymeric conglomeration generally composed of extracellular DNA, proteins, and polysaccharides. Biofilms may form on living or non-living surfaces and can be prevalent in natural, industrial and hospital settings.[2][3] The microbial cells growing in a biofilm are physiologically distinct from planktonic cells of the same organism, which, by contrast, are single-cells that may float or swim in a liquid medium.

  Microbes form a biofilm in response to many factors, which may include cellular recognition of specific or non-specific attachment sites on a surface, nutritional cues, or in some cases, by exposure of planktonic cells to sub-inhibitory concentrations of antibiotics.[4][5] When a cell switches to the biofilm mode of growth, it undergoes a phenotypic shift in behavior in which large suites of genes are differentially regulated.[6]

  Formation Formation of a biofilm begins with the attachment of free-floating microorganisms to a surface. While still not fully understood, it is thought that the first colonists of a biofilm adhere to the surface initially through weak, reversible adhesion via van der Waals forces and hydrophobic effects.[7][8] If the colonists are not immediately separated from the surface, they can anchor themselves more permanently using cell adhesion structures such as pili. Hydrophobicity also plays an important role in determining the ability of bacteria to form biofilms, as those with increased hydrophobicity have reduced repulsion between the extracellular matrix and the bacterium.[9]

  Some species are not able to attach to a surface on their own but are instead able to anchor themselves to the matrix or directly to earlier colonists. It is during this colonization that the cells are able to communicate via quorum sensing (QS) using products such as N-acyl homoserine lactone (AHL). Some bacteria are unable to form biofilms as successfully due to their limited motility. Non-motile bacteria cannot recognize the surface or aggregate together as easily as motile bacteria.[9] Once colonization has begun, the biofilm grows through a combination of cell division and recruitment. Polysaccharide matrices typically enclose bacterial biofilms. In addition to the polysaccharides, these matrices may also contain material from the surrounding environment, including but not limited to minerals, soil particles, and blood components, such as erythrocytes and fibrin.[9] The final stage of biofilm formation is known as dispersion, and is the stage in which the biofilm is established and may only change in shape and size.

  The development of a biofilm may allow for an aggregate cell colony (or colonies) to be increasingly resistant to antibiotics. Cell-cell communication or quorum sensing has been shown to be involved in the formation of biofilm in several bacterial species.[10]

  Development

  There are five stages of biofilm development (see illustration at right):[11]

  Initial attachment.

  Irreversible attachment.

  Maturation I.

  Maturation II.

  Dispersion.

  Dispersal

  Dispersal of cells from the biofilm colony is an essential stage of the biofilm life cycle. Dispersal enables biofilms to spread and colonize new surfaces. Enzymes that degrade the biofilm extracellular matrix, such as dispersin B and deoxyribonuclease, may play a role in biofilm dispersal.[12][13] Biofilm matrix degrading enzymes may be useful as anti-biofilm agents.[14][15] Recent evidence has shown that a fatty acid messenger, cis-2-decenoic acid, is capable of inducing dispersion and inhibiting growth of biofilm colonies. Secreted by Pseudomonas aeruginosa, this compound induces cyclo heteromorphic cells in several species of bacteria and the yeast Candida albicans.[16] Nitric oxide has also been shown to trigger the dispersal of biofilms of several bacteria species[17][18] at sub-toxic concentrations. Nitric oxide has the potential for the treatment of patients that suffer from chronic infections caused by biofilms.[19]

  It is generally assumed that cells dispersed from biofilms immediately go into the planktonic growth phase. However, recent studies have shown that the physiology of dispersed cells from Pseudomonas aeruginosa biofilms is highly different from those of planktonic and biofilm cells.[20][21] Hence, the dispersal process is a unique stage during the transition from biofilm to planktonic lifestyle in bacteria. Dispersed cells are found to be highly virulent against macrophages and Caenorhabditis elegans, but highly sensitive towards iron stress, as compared with planktonic cells.[20]

  Properties[edit]Biofilms are usually found on solid substrates submerged in or exposed to an aqueous solution, although they can form as floating mats on liquid surfaces and also on the surface of leaves, particularly in high humidity climates. Given sufficient resources for growth, a biofilm will quickly grow to be macroscopic (visible to the naked eye). Biofilms can contain many different types of microorganism, e.g. bacteria, archaea, protozoa, fungi and algae; each group performs specialized metabolic functions. However, some organisms will form single-species films under certain conditions. The social structure (cooperation/competition) within a biofilm depends highly on the different species present.[22]

  Extracellular matrix[edit]The biofilm is held together and protected by a matrix of secreted polymeric compounds called EPS. EPS is an abbreviation for either extracellular polymeric substance or exopolysaccharide, although the latter one only refers to the polysaccharide moiety of EPS. In fact, the EPS matrix consists not only of polysaccharides but also of proteins (which may be the major component in environmental and waste water biofilms) and nucleic acids. A large proportion of the EPS is more or less strongly hydrated, however, hydrophobic EPS also occur; one example is cellulose[23] which is produced by a range of microorganisms. This matrix encases the cells within it and facilitates communication among them through biochemical signals as well as gene exchange. The EPS matrix is an important key to the evolutionary success of biofilms. One reason is that it traps extracellular enzymes and keeps them in close proximity to the cells. Thus, the matrix represents an external digestion system and allows for stable synergistic microconsortia of different species (Wingender and Flemming, Nat. Rev. Microbiol. 8, 623-633). Some biofilms have been found to contain water channels that help distribute nutrients and signalling molecules.[24] This matrix is strong enough that under certain conditions, biofilms can become fossilized (Stromatolites).

  Bacteria living in a biofilm usually have significantly different properties from free-floating bacteria of the same species, as the dense and protected environment of the film allows them to cooperate and interact in various ways. One benefit of this environment is increased resistance to detergents and antibiotics, as the dense extracellular matrix and the outer layer of cells protect the interior of the community. In some cases antibiotic resistance can be increased a thousandfold.[25] Lateral gene transfer is greatly facilitated in biofilms and leads to a more stable biofilm structure.[26] Extracellular DNA is a major structural component of many different microbial biofilms.[27] Enzymatic degradation of extracellular DNA can weaken the biofilm structure and release microbial cells from the surface.

  However, biofilms are not always less susceptible to antibiotics. For instance, the biofilm form of Pseudomonas aeruginosa has no greater resistance to antimicrobials than do stationary-phase planktonic cells, although when the biofilm is compared to logarithmic-phase planktonic cells, the biofilm does have greater resistance to antimicrobials. This resistance to antibiotics in both stationary-phase cells and biofilms may be due to the presence of persister cells.[28]

  Habitat

  Biofilms are ubiquitous. Nearly every species of microorganism, not only bacteria and archaea, have mechanisms by which they can adhere to surfaces and to each other. Biofilms will form on virtually every non-shedding surface in a non-sterile aqueous (or very humid) environment.

  Biofilms can be found on rocks and pebbles at the bottom of most streams or rivers and often form on the surface of stagnant pools of water. In fact, biofilms are important components of food chains in rivers and streams and are grazed by the aquatic invertebrates upon which many fish feed.

  Biofilms can grow in the most extreme environments: from, for example, the extremely hot, briny waters of hot springs ranging from very acidic to very alkaline, to frozen glaciers.

  In the human environment, biofilms can grow in showers very easily since they provide a moist and warm environment for the biofilm to thrive. Biofilms can form inside water and sewage pipes and cause clogging and corrosion. Biofilms on floors and counters can make sanitation difficult in food preparation areas. Biofilm in soil can cause bioclogging.

  Biofilms in cooling- or heating-water systems are known to reduce heat transfer.[29]

  Biofilms in marine engineering systems, such as pipelines of the offshore oil and gas industry,[30] can lead to substantial corrosion problems. Corrosion is mainly due to abiotic factors; however, at least 20% of corrosion is caused by microorganisms that are attached to the metal subsurface (i.e., microbially influenced corrosion).

  Bacterial adhesion to boat hulls serves as the foundation for biofouling of seagoing vessels. Once a film of bacteria forms, it is easier for other marine organisms such as barnacles to attach. Such fouling can reduce maximum vessel speed by up to 20%, prolonging voyages and consuming fuel. Time in dry dock for refitting and repainting reduces the productivity of shipping assets, and the useful life of ships is also reduced due to corrosion and mechanical removal (scraping) of marine organisms from ships' hulls.

  Biofilms can also be harnessed for constructive purposes. For example, many sewage treatment plants include a secondary treatment stage in which waste water passes over biofilms grown on filters, which extract and digest organic compounds. In such biofilms, bacteria are mainly responsible for removal of organic matter (BOD), while protozoa and rotifers are mainly responsible for removal of suspended solids (SS), including pathogens and other microorganisms. Slow sand filters rely on biofilm development in the same way to filter surface water from lake, spring or river sources for drinking purposes. What we regard as clean water is effectively a waste material to these microcellular organisms.

  Biofilms can help eliminate petroleum oil from contaminated oceans or marine systems. The oil is eliminated by the hydrocarbon-degrading activities of microbial communities, in particular by a remarkable recently discovered group of specialists, the so-called hydrocarbonoclastic bacteria (HCB).[31]

  Stromatolites are layered accretionary structures formed in shallow water by the trapping, binding and cementation of sedimentary grains by microbial biofilms, especially of cyanobacteria. Stromatolites include some of the most ancient records of life on Earth, and are still forming today.

  Biofilms are present on the teeth of most animals as dental plaque, where they may cause tooth decay and gum disease.

  Biofilms are found on the surface of and inside plants. They can either contribute to crop disease or, as in the case of nitrogen-fixing Rhizobium on roots, exist symbiotically with the plant.[32]Examples of crop diseases related to biofilms include Citrus Canker, Pierce's Disease of grapes, and Bacterial Spot of plants such as peppers and tomatoes.[33]

  Biofilms are used in microbial fuel cells (MFCs) to generate electricity from a variety of starting materials, including complex organic waste and renewable biomass.[3][34][35]

  Recent studies in 2003 discovered that the immune system supports bio-film development in the large intestine. This was supported mainly with the fact that the two most abundantly produced molecules by the immune system also support bio-film production and are associated with the bio-films developed in the gut. This is especially important because the appendix holds a mass amount of these bacterial bio-films.[36] This discovery helps to distinguish the possible function of the appendix and the idea that the appendix can help reinoculate the gut with good gut flora.

托福辅导

关注新东方在线托福

托福机经·Official题目练习

考前重点突破·听说读写海量资料

更多资料
更多>>
更多内容

免费获取托福备考大礼包

微信扫描下方二维码 立即领取

托福辅导
更多>>
更多公益讲座>>
更多>>
更多资料