托福分数测试HOT
托福课程优惠HOT
托福正价课试听0元
新托福机考练习NEW
0元讲座HOT
新版托福入门课程HOT
托福入门导学NEW
4000人报
托福机经
PDF版
TPO练习
官方授权
资料下载
826套
专业测评
40118人已测
高分经验
1193帖
扫码免费领资料
托福全科备考资料
免费水平测试及规划
扫码关注掌握一手留学资讯
回复XDF免费水平测试
在2014年5月24日的托福阅读考试中有这样一道题:小行星对恐龙灭绝的影响。针对这道托福考题,新东方富亦聪老师来为大家普及一下关于小行星对恐龙灭绝的影响的背景知识,这样有助于考生在面对这类题目时方便作答,新东方富亦聪老师指出:在恐龙绝灭假说中,小行星撞击说最为流行。此说认为,小行星(后有学者认为彗星的可能性更大)才是杀死恐龙的罪魁祸首。
托福阅读真题再现:
小行星对恐龙灭绝的影响。一个科学家发现土层中里有很多Ir元素,而Ir元素在地球上少见,因此推断是小行星导致了恐龙灭绝。后面又说了小行星使得气温降低,空气化学组成改变等等也导致恐龙的灭绝,但是一些小的啮齿类动物则存活了下来。
新东方老师解析:
在恐龙绝灭假说中,小行星撞击说最为流行。此说认为,小行星(后有学者认为彗星的可能性更大)才是杀死恐龙的罪魁祸首。小行星撞击说是1979年由美国物理学家阿尔瓦雷斯等人提出的。他们认为,6500万年前的一颗直径约为10公里的小行星与地球相撞,发生猛烈大爆炸,大量尘埃抛入大气层中,致使数月之内阳光被遮挡,大地一片黑暗寒冷,植物枯死,食物链中断,包括恐龙在内的很多动物绝灭。
托福阅读相关背景:
参考文章:
Meteorite Impact and Dinosaur Extinction
Extinction of the Dinosaurs
Mass Extinctions
背景知识:
Impact event
Biospheric effects
The effect of impact events on the biosphere has been the subject of scientific debate. Several theories of impact related mass extinction have been developed. In the past 500 million years there have been five generally accepted, major mass extinctions that on average extinguished half of all species. One of the largest mass extinction to have affected life on Earth was in the Permian-Triassic, which ended the Permian period 250 million years ago and killed off 90% of all species; life on Earth took 30 million years to recover. The cause of the Permian-Triassic extinction is still matter of debate with the age and origin of proposed impact craters, i.e. the Bedout High structure, hypothesized to be associated with it are still controversial. The last such mass extinction led to the demise of the dinosaurs and coincided with a large meteorite impact; this is the Cretaceous–Paleogene extinction event (also known as the K–T or K–Pg extinction event); This occurred 66 million years ago. There is no definitive evidence of impacts leading to the three other major mass extinctions.
In 1980, physicist Luis Alvarez; his son, geologist Walter Alvarez; and nuclear chemists Frank Asaro and Helen V. Michael from the University of California, Berkeley discovered unusually high concentrations of iridium in a specific layer of rock strata in the Earth's crust. Iridium is an element that is rare on Earth but relatively abundant in many meteorites. From the amount and distribution of iridium present in the 65-million-year-old "iridium layer", the Alvarez team later estimated that an asteroid of 10 to 14 km (6 to 9 mi) must have collided with the earth. This iridium layer at the Cretaceous–Paleogene boundary has been found worldwide at 100 different sites. Multidirectionally shocked quartz (coesite), which is only known to form as the result of large impacts or atomic bomb explosions, has also been found in the same layer at more than 30 sites. Soot and ash at levels tens of thousands times normal levels were found with the above.
Anomalies in chromium isotopic ratios found within the K-T boundary layer strongly support the impact theory. Chromium isotopic ratios are homogeneous within the earth, therefore these isotopic anomalies exclude a volcanic origin which was also proposed as a cause for the iridium enrichment. Furthermore the chromium isotopic ratios measured in the K-T boundary are similar to the chromium isotopic ratios found in carbonaceous chondrites. Thus a probable candidate for the impactor is a carbonaceous asteroid but also a comet is possible because comets are assumed to consist of material similar to carbonaceous chondrites.
Probably the most convincing evidence for a worldwide catastrophe was the discovery of the crater which has since been named Chicxulub Crater. This crater is centered on the Yucatán Peninsula of Mexico and was discovered by Tony Camargo and Glen Pentfield while working as geophysicists for the Mexican oil companyPEMEX. What they reported as a circular feature later turned out to be a crater estimated to be 180 km (110 mi) in diameter. Other researchers would later find that the end-Cretaceous extinction event that wiped out the dinosaurs had lasted for thousands of years instead of millions of years as had previously been thought. This convinced the vast majority of scientists that this extinction resulted from a point event that is most probably an extraterrestrial impact and not from increased volcanism and climate change (which would spread its main effect over a much longer time period).
Recently, several proposed craters around the world have been dated to approximately the same age as Chicxulub — for example, the Silverpit crater in the United Kingdom, the Boltysh crater in Ukraine and the Shiva crater near India. This has led to the suggestion that the Chicxulub impact was one of several that occurred almost simultaneously, perhaps due to a disrupted comet impacting the Earth in a similar manner to the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994; however, the uncertain age and provenance of these structures leaves the hypothesis without widespread support.
It was the lack of high concentrations of iridium and shocked quartz which has prevented the acceptance of the idea that the Permian extinction was also caused by an impact. During the late Permian all the continents were combined into one supercontinent named Pangaea and all the oceans formed one superocean,Panthalassa. If an impact occurred in the ocean and not on land at all, then there would be little shocked quartz released (since oceanic crust has relatively little silica) and much less material.
Although there is now general agreement that there was a huge impact at the end of the Cretaceous that led to the iridium enrichment of the K-T boundary layer, remnants have been found of other, smaller impacts, some nearing half the size of the Chicxulub crater, which did not result in any mass extinctions, and there is no clear linkage between an impact and any other incident of mass extinction.
Paleontologists David M. Raup and Jack Sepkoski have proposed that an excess of extinction events occurs roughly every 26 million years (though many are relatively minor). This led physicist Richard A. Muller to suggest that these extinctions could be due to a hypothetical companion star to the Sun calledNemesis periodically disrupting the orbits of comets in the Oort cloud, and leading to a large increase in the number of comets reaching the inner solar system where they might hit Earth. Physicist Adrian Melott and paleontologist Richard Bambach have more recently verified the Raup and Sepkoski finding, but argue that it is not consistent with the characteristics expected of a Nemesis-style periodicity.
资料下载
2021-2024托福机经试题|答案|范文下载
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福全科备考资料大礼包
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福正价课试听课程包
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福定制备考规划
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福TPO免费模考
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福免费水平测试
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福写作新题型模拟题+范文汇总[ETS发布]
发布时间:2023-07-30关注新东方在线托福
回复【XDF】获取
2023全年托福机经PDF版下载
发布时间:2023-06-17关注新东方在线托福
回复【XDF】获取
2022全年托福机经PDF版下载
发布时间:2023-06-17关注新东方在线托福
回复【XDF】获取
2022全年写作托福机经整理
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
2022年托福考后题目回忆
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
托福口语黄金80题附录音
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
新东方IBT写作网络课堂录音[.rar]
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
21天托福听力提升计划
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
不怕跑题偏题,这份写作资料请收好
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
托福阅读提分技巧锦囊妙计
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
口语拖后腿?因为你缺少这套万能句式资料
发布时间:2019-11-01关注新东方在线托福
回复【XDF】获取
攻破托福听力难关的资料包
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
看剧学英语,经典美剧一键获取
发布时间:2019-11-01关注新东方在线托福
回复【XDF】获取
原版外刊资源合集|精心打包整理
发布时间:2019-11-01关注新东方在线托福
回复【XDF】获取
关注新东方在线托福,
回复【XDF】获取大礼包
推荐阅读
回答:分数进入瓶颈期,我想你可以这么做。1、提高自己的分析总结能力,题目做完之后仔细分析错误原因,归纳错题,看看是不是哪个类型的题目容易出错。2、建立自查自纠能力
来源 : 新东方在线 2020-08-18 16:13:07 关键字 :
回答:不可以的,want to do是固定搭配不能变,后面的to cook是表目的,所以都不可以用doing的形式替代。
来源 : 新东方在线 2020-08-18 16:01:48 关键字 :
如果我写作写了一个人aperson,后面想说他的努力,后面用什么代词指代呢,是his?her?ones?hisorher?回答:你可以写hisorher。
来源 : 新东方在线 2020-08-18 15:54:24 关键字 :
回答:是的。morphlogical是形态学,生态学是ecology。你好,Morpheus是古希腊梦神睡神的名字。
来源 : 新东方在线 2020-08-18 15:51:16 关键字 :
回答:独立写作,建议350、400,不超过450,综合写作250左右。
来源 : 新东方在线 2020-08-18 15:46:51 关键字 :
资料下载
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
阅读排行榜
相关内容