托福分数测试HOT
托福课程优惠HOT
托福正价课试听0元
新托福机考练习NEW
0元讲座HOT
新版托福入门课程HOT
托福入门导学NEW
4000人报
托福机经
PDF版
TPO练习
官方授权
资料下载
826套
专业测评
40118人已测
高分经验
1193帖
扫码免费领资料
托福全科备考资料
免费水平测试及规划
扫码关注掌握一手留学资讯
回复XDF免费水平测试
为了帮助考生更好的备考托福阅读,在考试中能取得更加理想的成绩,下面新东方在线托福网为大家带来托福阅读经典素材:地下水一文,更多精彩尽请关注新东方在线托福网!
TPO-1-1:Groundwater
Groundwater is the word used to describe water that saturates the ground, filling all the available spaces. By far the most abundant type of groundwater is meteoric water; this is the groundwater that circulates as part of the water cycle. Ordinary meteoric water is water that has soaked into the ground from the surface, from precipitation (rain and snow) and from lakes and streams. There it remains, sometimes for long periods, before emerging at the surface again. At first thought it seems incredible that there can be enough space in the “solid”ground underfoot to hold all this water.
The necessary space is there, however, in many forms. The commonest spaces are those among the particles—sand grains and tiny pebbles—of loose, unconsolidated sand and gravel. Beds of this material, out of sight beneath the soil, are common. They are found wherever fast rivers carrying loads of coarse sediment once flowed. For example, as the great ice sheets that covered North America during the last ice age steadily melted away, huge volumes of water flowed from them. The water was always laden with pebbles, gravel, and sand, known as glacial outwash, that was deposited as the flow slowed down.
The same thing happens to this day, though on a smaller scale, wherever a sediment-laden river or stream emerges from a mountain valley onto relatively flat land, dropping its load as the current slows: the water usually spreads out fanwise, depositing the sediment in the form of a smooth, fan-shaped slope. Sediments are also dropped where a river slows on entering a lake or the sea, the deposited sediments are on a lake floor or the seafloor at first, but will be located inland at some future date, when the sea level falls or the land rises; such beds are sometimes thousands of meters thick.
In lowland country almost any spot on the ground may overlie what was once the bed of a river that has since become buried by soil; if they are now below the water’s upper surface (the water table), the gravels and sands of the former riverbed, and its sandbars, will be saturated with groundwater.
So much for unconsolidated sediments. Consolidated (or cemented) sediments, too, contain millions of minute water-holding pores. This is because the gaps among the original grains are often not totally plugged with cementing chemicals; also, parts of the original grains may become dissolved by percolating groundwater, either while consolidation is taking place or at any time afterwards. The result is that sandstone, for example, can be as porous as the loose sand from which it was formed.
Thus a proportion of the total volume of any sediment, loose or cemented, consists of empty space. Most crystalline rocks are much more solid; a common exception is basalt, a form of solidified volcanic lava, which is sometimes full of tiny bubbles that make it very porous.
The proportion of empty space in a rock is known as its porosity. But note that porosity is not the same as permeability, which measures the ease with which water can flow through a material; this depends on the sizes of the individual cavities and the crevices linking them.
Much of the water in a sample of water-saturated sediment or rock will drain from it if the sample is put in a suitable dry place. But some will remain, clinging to all solid surfaces. It is held there by the force of surface tension without which water would drain instantly from any wet surface, leaving it totally dry. The total volume of water in the saturated sample must therefore be thought of as consisting of water that can, and water that cannot, drain away.
The relative amount of these two kinds of water varies greatly from one kind of rock or sediment to another, even though their porosities may be the same. What happens depends on pore size. If the pores are large, the water in them will exist as drops too heavy for surface tension to hold, and it will drain away; but if the pores are small enough, the water in them will exist as thin films, too light to overcome the force of surface tension holding them in place; then the water will be firmly held.
资料下载
2021-2025托福机经试题|答案|范文下载
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福全科备考资料大礼包
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福正价课试听课程包
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福定制备考规划
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福TPO免费模考
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福免费水平测试
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福写作新题型模拟题+范文汇总[ETS发布]
发布时间:2023-07-30关注新东方在线托福
回复【XDF】获取
2023全年托福机经PDF版下载
发布时间:2023-06-17关注新东方在线托福
回复【XDF】获取
2022全年托福机经PDF版下载
发布时间:2023-06-17关注新东方在线托福
回复【XDF】获取
2022全年写作托福机经整理
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
2022年托福考后题目回忆
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
托福口语黄金80题附录音
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
新东方IBT写作网络课堂录音[.rar]
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
21天托福听力提升计划
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
不怕跑题偏题,这份写作资料请收好
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
托福阅读提分技巧锦囊妙计
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
口语拖后腿?因为你缺少这套万能句式资料
发布时间:2019-11-01关注新东方在线托福
回复【XDF】获取
攻破托福听力难关的资料包
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
看剧学英语,经典美剧一键获取
发布时间:2019-11-01关注新东方在线托福
回复【XDF】获取
原版外刊资源合集|精心打包整理
发布时间:2019-11-01关注新东方在线托福
回复【XDF】获取
关注新东方在线托福,
回复【XDF】获取大礼包

推荐阅读
托福考试网整理了2024托福考试时间、托福考试内容、托福写作新题型样题+范文、托福考题等内容,今天带来的是ETS官方托福阅读模拟题【2】,希望对同学们托福考试有所帮助!
托福考试网整理了2024托福考试时间、托福考试内容、托福写作新题型样题+范文、托福考题等内容,今天带来的是ETS官方托福阅读模拟题【1】,希望对同学们托福考试有所帮助!
托福考试网为大家整理了2024年托福阅读评分标准、托福阅读考试时间、托福阅读备考攻略等内容,今天给大家带来的是2024年1月托福考试考前刷题:阅读题(4),供大家参考!
托福考试网为大家整理了2024年托福阅读评分标准、托福阅读考试时间、托福阅读备考攻略等内容,今天给大家带来的是2024年1月托福考试考前刷题:阅读题(3),供大家参考!
托福考试网为大家整理了2024年托福阅读评分标准、托福阅读考试时间、托福阅读备考攻略等内容,今天给大家带来的是2024年1月托福考试考前刷题:阅读题(2),供大家参考!
资料下载
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
阅读排行榜
相关内容