课程咨询
托福培训

扫码免费领资料

托福全科备考资料

免费水平测试及规划

托福培训

扫码关注掌握一手留学资讯

回复XDF免费水平测试

托福阅读材料:缺失碳的情况

2016-07-25 12:49:48来源:网络

  By rights it should be worse. Each year humanity dumps roughly 8.8 billion tons (8 metric tons) of carbon into the atmosphere, 6.5 billion tons (5.9 metric tons) from fossil fuels and 1.5 billion (1.4 metric) from deforestation. But less than half that total, 3.2 billion tons (2.9 metric tons), remains in the atmosphere to warm the planet. Where is the missing carbon? "It's a really major mystery, if you think about it," says Wofsy, an atmospheric scientist at Harvard University. His research site in the Harvard Forest is apparently not the only place where nature is breathing deep and helping save us from ourselves. Forests, grasslands, and the waters of the oceans must be acting as carbon sinks. They steal back roughly half of the carbon dioxide we emit, slowing its buildup in the atmosphere and delaying the effects on climate.

  Who can complain? No one, for now. But the problem is that scientists can't be sure that this blessing will last, or whether, as the globe continues to warm, it might even change to a curse if forests and other ecosystems change from carbon sinks to sources, releasing more carbon into the atmosphere than they absorb. The doubts have sent researchers into forests and rangelands, out to the tundra and to sea, to track down and understand the missing carbon.

  This is not just a matter of intellectual curiosity. Scorching summers, fiercer storms, altered rainfall patterns, and shifting species—the disappearance of sugar maples from New England, for example—are some of the milder changes that global warming might bring. And humanity is on course to add another 200 to 600 parts per million to atmospheric carbon dioxide by late in the century. At that level, says Princeton University ecologist Steve Pacala, "all kinds of terrible things could happen, and the universe of terrible possibilities is so large that probably some of them will." Coral reefs could vanish; deserts could spread; currents that ferry heat from the tropics to northern regions could change course, perhaps chilling the British Isles and Scandinavia while the rest of the globe keeps warming.

  If nature withdraws its helping hand—if the carbon sinks stop absorbing some of our excess carbon dioxide—we could be facing drastic changes even before 2050, a disaster too swift to avoid. But if the carbon sinks hold out or even grow, we might have extra decades in which to wean the global economy from carbon-emitting energy sources. Some scientists and engineers believe that by understanding natural carbon sinks, we may be able to enhance them or even create our own places to safely jail this threat to global climate.

  The backdrop for these hopes and fears is a natural cycle as real as your own breathing and as abstract as the numbers on Wofsy's instruments. In 1771, about the time of the first stirrings of the industrial revolution and its appetite for fossil fuel, an English minister grasped key processes of the natural carbon cycle. In a series of ingenious experiments, Joseph Priestley found that flames and animals' breath "injure" the air in a sealed jar, making it unwholesome to breathe. But a green sprig of mint, he found, could restore its goodness. Priestley could not name the gases responsible, but we know now that the fire and respiration used up oxygen and gave off carbon dioxide. The mint reversed both processes. Photosynthesis took up the carbon dioxide, converted it into plant tissue, and gave off oxygen as a by-product.

  The world is just a bigger jar. Tens of billions of tons of carbon a year pass between land and the atmosphere: given off by living things as they breathe and decay and taken up by green plants, which produce oxygen. A similar traffic in carbon, between marine plants and animals, takes place within the waters of the ocean. And nearly a hundred billion tons of carbon diffuse back and forth between ocean and atmosphere.

  Compared with these vast natural exchanges, the few billion tons of carbon that humans contribute to the atmosphere each year seem paltry. Yet like a finger on a balance, our steady contributions are throwing the natural cycle out of whack. The atmosphere's carbon backup is growing: Its carbon dioxide level has risen by some 30 percent since Priestley's time. It may now be higher than it has been in at least 20 million years.

本文关键字: 托福阅读 托福阅读材料

托福辅导

关注新东方在线托福

托福机经·Official题目练习

考前重点突破·听说读写海量资料

更多资料
更多>>
更多内容

免费获取托福备考大礼包

微信扫描下方二维码 立即领取

托福辅导
更多>>
更多公益讲座>>
更多>>
更多资料