课程咨询
新东方在线网络课堂 托福 新东方在线 > 托福 > 托福听力 > 正文

托福听力TPO24听力文本(Conversation+Lecture)

2014-04-04 14:03:14 来源:新东方在线整理托福资料下载

  Lecture 4

  Astronomy (Shield Volcanoes on Venus)

  Narrator: Listen to part of a lecture in an astronomy class.

  Professor: Many people have been fascinated about Venus for centuries because of its thick cloud cover, this so-called planet of mystery and all of that. Well, what's under those clouds? What's the surface of the planet like? Some questions about the surface are still unresolved but, but we have learned a lot about it in the past several years.

  First of all, let me talk about how we have been able to get past those clouds. First, there were Soviet modules that landed directly on the surface and sent back some images of what was around them. Second, we did some radar imaging from satellites from above. Radar can get through the clouds. So what have we learned? Yes, Karen?

  Student: Well, I remember reading that there's not really a lot going on, that the surface of Venus is just flat and smooth in a lot of places.

  Professor: Yeah, smooth in a lot of places. But that's not, um... that's not the whole picture. In other areas, you've got canyons, ripped valleys, meteo craters, uh, lava domes, these lava formations that look like giant pancakes. And also volcanoes.

  Well, one of the most interesting features on the surface are in fact the shield volcanoes. Shield volcanoes formed when magma comes out of the ground in the same spot over and over again. Remember, magma is hot molten rock that's underground, and it is called lava when it reaches the surface. Uh, so the lava builds up, and hardens, and a volcano forms.

  Now, the lava on Venus is thin. It spreads out easily. So shield volcanoes have very gentle sloping sides. They are called shield volcanoes, because viewed from above, they kind of resemble shields, you know, like a warrior's shield.

  But what's particularly interesting about these volcanoes is that most of the volcanoes here on Earth are not shield volcanoes. Instead, they are other volcano types, like strata volcanoes, for example, which are a result of tectonic plate movement. Remember tectonic plates?

  Underneath the Earth's crust, there are a number of shifting slabs or plates that are slowly moving. And in the zones on the edges of the plates where different plates meet and interact, that's where we get most of Earth's volcanoes.

  On Venus, however, volcanoes are not clustered in discrete zones like they are on Earth. Instead, they are more or less randomly scattered over Venus's surface. Well, that's significant. Venus has mostly shield volcanoes, and they are randomly scattered, that indicates that Venus does not have moving tectonic plates, and that's a big difference compared to Earth. Here on Earth, moving tectonic plates are a major geological element, just crucial for the whole surface dynamic, right?

  So why doesn't Venus have them? Well, there are a few theories. One of them is that this has to do with the fact that Venus has no surface water that's needed to kind of lubricate the movement of the plates, you know, like oceans on Earth. Yeah, I forgot to spell that out. Uh, Venus has no surface water.

  Student: Wait a second. Did you say we have shield volcanoes on Earth? Can you give an example?

  Professor: Sure. The volcanoes in the Hawaii islands, in the Pacific Ocean are shield volcanoes. They are formed over a hot spot of magma. So while on Earth we have several types of volcanoes, on Venus there's mostly the one type. Uh, Eric?

  Student: Are the volcanoes on Venus still active?

  Professor: Well, that's an interesting question. There is still some discussion on that point. But here's what we do now. First, the level of sulfur dioxide gas above Venus's clouds shows large and very frequent fluctuations. It is quite possible that these fluctuations, the huge increase and decrease of sulfur dioxide, happening again and again. It's quite possible that this is due to volcanic eruptions, because volcanic eruptions often emit gases. If that's the case, volcanism could very well be the root cause of Venus's thick cloud cover. And also we have observed bursts of radio energy from the planet's surface. These bursts are similar to what we see when volcanoes erupt on Earth. So this too suggests ongoing volcanic activity. But although this is intriguing evidence, no one's actually observed a Venus volcano erupting yet, so we can't be positive.

本文关键字: 托福听力TPO24原文 托福听力TPO24文本

分享到:
托福辅导

关注新东方在线托福

托福机经·Official题目练习

考前重点突破·听说读写海量资料

更多资料

相关推荐

版权及免责声明

1,"新东方在线"上的内容,包括文章、资料、资讯等, 本网注明"稿件来源:新东方在线"的,其版权 均为"新东方在线"或北京新东方迅程网络科技有限公司所有 ,任何公司、媒体、网站或个人未经授权不得转载、链接、转贴或以其他方式使用。已经得到 "新东方在线"许可 的媒体、网站,在使用时必须注明"稿件来源:新东方",违者本网站将依法追究责任。

2, "新东方在线" 未注明"稿件来源:新东方"的 文章、资料、资讯等 均为转载稿,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。如擅自篡改为 " 稿件来源:新东方 " ,本网站将依法追究其法律责任。

3,如本网转载稿涉及版权等问题,请作者见稿后在两周内与新东方在线联系。

免费获取托福备考大礼包

微信扫描下方二维码 立即领取

托福辅导
更多>>
更多公益讲座>>
更多>>
更多资料
  • 留学TED 留学生开学季 一定要知道的事
  • 北美中学直播课程
  • 托福听力备考全攻略
  • 世界大学排名榜(全球大学排名)
  • 最新美国大学排名

提分历程更多>>

实用 • 工具

托福课程排行榜本周本月

托福公开课更多>>

推荐阅读