2014-03-31 15:37:41 来源:新东方在线整理托福资料下载
Cenozoic Era 65 million years ago to the present
Paleontologists have argued for a long time that the demise of the dinosaurs was caused by climatic alterations associated with slow changes in the positions of continents and seas resulting from plate tectonics. Off and on throughout the Cretaceous (the last period of the Mesozoic era, during which dinosaurs flourished), large shallow seas covered extensive areas of the continents. Data from diverse sources, including geochemical evidence preserved in seafloor sediments, indicate that the Late Cretaceous climate was milder than today’s. The days were not too hot, nor the nights too cold. The summers were not too warm, nor the winters too frigid. The shallow seas on the continents probably buffered the temperature of the nearby air, keeping it relatively constant.
At the end of the Cretaceous, the geological record shows that these seaways retreated from the continents back into the major ocean basins. No one knows why. Over a period of about 100,000 years, while the seas pulled back, climates around the world became dramatically more extreme: warmer days, cooler nights; hotter summers, colder winters. Perhaps dinosaurs could not tolerate these extreme temperature changes and became extinct.
If true, though, why did cold-blooded animals such as snakes, lizards, turtles, and crocodiles survive the freezing winters and torrid summers? These animals are at the mercy of the climate to maintain a livable body temperature. It’s hard to understand why they would not be affected, whereas dinosaurs were left too crippled to cope, especially if, as some scientists believe, dinosaurs were warm-blooded. Critics also point out that the shallow seaways had retreated from and advanced on the continents numerous times during the Mesozoic, so why did the dinosaurs survive the climatic changes associated with the earlier fluctuations but not with this one? Although initially appealing, the hypothesis of a simple climatic change related to sea levels is insufficient to explain all the data.
Dissatisfaction with conventional explanations for dinosaur extinctions led to a surprising observation that, in turn, has suggested a new hypothesis. Many plants and animals disappear abruptly from the fossil record as one moves from layers of rock documenting the end of the Cretaceous up into rocks representing the beginning of the Cenozoic (the era after the Mesozoic). Between the last layer of Cretaceous rock and the first layer of Cenozoic rock, there is often a thin layer of clay. Scientists felt that they could get an idea of how long the extinctions took by determining how long it took to deposit this one centimeter of clay and they thought they could determine the time it took to deposit the clay by determining the amount of the element iridium (Ir) it contained.
Ir has not been common at Earth’s since the very beginning of the planet’s history. Because it usually exists in a metallic state, it was preferentially incorporated in Earth’s core as the planet cooled and consolidated. Ir is found in high concentrations in some meteorites, in which the solar system’s original chemical composition is preserved. Even today, microscopic meteorites continually bombard Earth, falling on both land and sea. By measuring how many of these meteorites fall to Earth over a given period of time, scientists can estimate how long it might have taken to deposit the observed amount of Ir in the boundary clay. These calculations suggest that a period of about one million years would have been required. However, other reliable evidence suggests that the deposition of the boundary clay could not have taken one million years. So the unusually high concentration of Ir seems to require a special explanation.
In view of these facts, scientists hypothesized that a single large asteroid, about 10 to 15 kilometers across, collided with Earth, and the resulting fallout created the boundary clay. Their calculations show that the impact kicked up a dust cloud that cut off sunlight for several months, inhibiting photosynthesis in plants; decreased surface temperatures on continents to below freezing; caused extreme episodes of acid rain; and significantly raised long-term global temperatures through the greenhouse effect. This disruption of food chain and climate would have eradicated the dinosaurs and other organisms in less than fifty years.
Paragraph 1: Paleontologists have argued for a long time that the demise of the dinosaurs was caused by climatic alterations associated with slow changes in the positions of continents and seas resulting from plate tectonics. Off and on throughout the Cretaceous (the last period of the Mesozoic era, during which dinosaurs flourished), large shallow seas covered extensive areas of the continents. Data from diverse sources, including geochemical evidence preserved in seafloor sediments, indicate that the Late Cretaceous climate was milder than today’s. The days were not too hot, nor the nights too cold. The summers were not too warm, nor the winters too frigid. The shallow seas on the continents probably buffered the temperature of the nearby air, keeping it relatively constant.
1. According to paragraph 1, which of the following is true of the Late Cretaceous climate?
○Summers were very warm and winters were very cold.
○Shallow seas on the continents caused frequent temperature changes.
○The climate was very similar to today’s climate.
○The climate did not change dramatically from season to season.
Paragraph 2: At the end of the Cretaceous, the geological record shows that these seaways retreated from the continents back into the major ocean basins. No one knows why. Over a period of about 100,000 years, while the seas pulled back, climates around the world became dramatically more extreme: warmer days, cooler nights; hotter summers, colder winters. Perhaps dinosaurs could not tolerate these extreme temperature changes and became extinct.
2. Which of the following reasons is suggested in paragraph 2 for the extinction of the dinosaurs?
○Changes in the lengths of the days and nights during the late Cretaceous period
○Droughts caused by the movement of seaways back into the oceans
○The change from mild to severe climates during the Late Cretaceous period
○An extreme decrease in the average yearly temperature over 10,ooo years
Paragraph 3: If true, though, why did cold-blooded animals such as snakes, lizards, turtles, and crocodiles survive the freezing winters and torrid summers? These animals are at the mercy of the climate to maintain a livable body temperature. It’s hard to understand why they would not be affected, whereas dinosaurs were left too crippled to cope, especially if, as some scientists believe, dinosaurs were warm-blooded. Critics also point out that the shallow seaways had retreated from and advanced on the continents numerous times during the Mesozoic, so why did the dinosaurs survive the climatic changes associated with the earlier fluctuations but not with this one? Although initially appealing, the hypothesis of a simple climatic change related to sea levels is insufficient to explain all the data.
3. Why does the author mention the survival of “snakes, lizards, turtles, and crocodiles” in paragraph 3?
○To argue that dinosaurs may have become extinct because they were not cold-blooded animals
○To question the adequacy of the hypothesis that climatic change related to sea levels caused the extinction of the dinosaurs
○To present examples of animals that could maintain a livable body temperature more easily than dinosaurs
○To support a hypothesis that these animals were not as sensitive to climate changes in the Cretaceous period as they are today
4. The word “cope” in the passage is closest in meaning to
○adapt
○move
○continue
○compete
5. According to paragraph 3, which of the following is true of changes in climate before the Cretaceous period and the effect of these changes on dinosaurs?
○Climate changes associated with the movement of seaways before the Cretaceous period did not cause dinosaurs to become extinct.来源:北京新航道托福培训
○Changes in climate before the Cretaceous period caused severe fluctuations in sea level, resulting in the extinction of the dinosaurs.
○Frequent changes in climate before the Cretaceous period made dinosaurs better able to maintain a livable body temperature.
○Before the Cretaceous period there were few changes in climate, and dinosaurs flourished.
6. The word “fluctuations” in the passage is closest in meaning to
○extremes
○retreats
○periods
○variations
Paragraph 4: Dissatisfaction with conventional explanations for dinosaur extinctions led to a surprising observation that, in turn, has suggested a new hypothesis. Many plants and animals disappear abruptly from the fossil record as one moves from layers of rock documenting the end of the Cretaceous up into rocks representing the beginning of the Cenozoic (the era after the Mesozoic). Between the last layer of Cretaceous rock and the first layer of Cenozoic rock, there is often a thin layer of clay. Scientists felt that they could get an idea of how long the extinctions took by determining how long it took to deposit this one centimeter of clay and they thought they could determine the time it took to deposit the clay by determining the amount of the element iridium (lr) it contained.
7. Which of the sentences below best expresses the essential information in the highlighted sentence in the passage? In correct choices change the meaning in important ways or leave out essential information.
○The fossil record suggests that there was an abrupt extinction of many plants and animals at the end of the Mesozoic era.
○Few fossils of the Mesozoic era have survived in the rocks that mark the end of the Cretaceous.
○Fossils from the Cretaceous period of the Mesozoic up to the beginning of the Cenozoic era have been removed from the layers of rock that surrounded them.
○Plants and animals from the Mesozoic era were unable to survive in the Cenozoic era.
Paragraph 4: Dissatisfaction with conventional explanations for dinosaur extinctions led to a surprising observation that, in turn, has suggested a new hypothesis. Many plants and animals disappear abruptly from the fossil record as one moves from layers of rock documenting the end of the Cretaceous up into rocks representing the beginning of the Cenozoic (the era after the Mesozoic). Between the last layer of Cretaceous rock and the first layer of Cenozoic rock, there is often a thin layer of clay. Scientists felt that they could get an idea of how long the extinctions took by determining how long it took to deposit this one centimeter of clay and they thought they could determine the time it took to deposit the clay by determining the amount of the element iridium (Ir) it contained.
8. In paragraph 4, all the following questions are answered EXCEPT:
○Why is there a layer of clay between the rocks of the Cretaceous and Cenozoic?
○Why were scientists interested in determining how long it took to deposit the layer of clay at the end of the Cretaceous?
○What was the effect of the surprising observation scientists made?
○Why did scientists want more information about the dinosaur extinctions at the end of the Cretaceous?
Paragraph 5: Ir has not been common at Earth’s since the very beginning of the planet’s history. Because it usually exists in a metallic state, it was preferentially incorporated in Earth’s core as the planet cooled and consolidated. Ir is found in high concentrations in some meteorites, in which the solar system’s original chemical composition is preserved. Even today, microscopic meteorites continually bombard Earth, falling on both land and sea. By measuring how many of these meteorites fall to Earth over a given period of time, scientists can estimate how long it might have taken to deposit the observed amount of Ir in the boundary clay. These calculations suggest that a period of about one million years would have been required. However, other reliable evidence suggests that the deposition of the boundary clay could not have taken one million years. So the unusually high concentration of Ir seems to require a special explanation.
9. The word “bombard” in the passage is closest in meaning to
○approach
○strike
○pass
○circle
10. Paragraph 5 implies that a special explanation of Ir in the boundary clay is needed because
○the Ir in microscopic meteorites reaching Earth during the Cretaceous period would have been incorporated into Earth’s core
○the Ir in the boundary clay was deposited much more than a million years ago
○the concentration of Ir in the boundary clay is higher than in microscopic meteorites
○the amount of Ir in the boundary clay is too great to have come from microscopic meteorites during the time the boundary clay was deposited
Paragraph 6: In view of these facts, scientists hypothesized that a single large asteroid, about 10 to 15 kilometers across, collided with Earth, and the resulting fallout created the boundary clay. Their calculations show that the impact kicked up a dust cloud that cut off sunlight for several months, inhibiting photosynthesis in plants; decreased surface temperatures on continents to below freezing; caused extreme episodes of acid rain; and significantly raised long-term global temperatures through the greenhouse effect. This disruption of food chain and climate would have eradicated the dinosaurs and other organisms in less than fifty years.
11. The word “disruption” in the passage is closest in meaning to
○exhaustion
○disturbance
○modification
○disappearance
12. Paragraph 6 mentions all of the following effects of the hypothesized asteroid collision EXCEPT
○a large dust cloud that blocked sunlight
○an immediate drop in the surface temperatures of the continents
○an extreme decrease in rainfall on the continents
○a long-term increase in global temperatures
Paragraph 5: Ir has not been common at Earth’s since the very beginning of the planet’s history. Because it usually exists in a metallic state, it was preferentially incorporated in Earth’s core as the planet cooled and consolidated. Ir is found in high concentrations in some meteorites, in which the solar system’s original chemical composition is preserved. Even today, microscopic meteorites continually bombard Earth, falling on both land and sea. By measuring how many of these meteorites fall to Earth over a given period of time, scientists can estimate how long it might have taken to deposit the observed amount of Ir in the boundary clay. ■ These calculations suggest that a period of about one million years would have been required. ■However, other reliable evidence suggests that the deposition of the boundary clay could not have taken one million years. ■So the unusually high concentration of Ir seems to require a special explanation. ■
13. Look at the four squares [■] that indicate where the following sentence could be added to the passage.
Consequently, the idea that the Ir in the boundary clay came from microscopic meteorites cannot be accepted.
Where would the sentence best fit?
14. Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some sentences do not belong in the summary because they express that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points.
For a long time scientists have argued that the extinction of the dinosaurs was related to climate change.
●
●
●
Answer choices
○A simple climate change does not explain some important data related to the extinction of the dinosaurs at the end of the Cretaceous.
○The retreat of the seaways at the end of the Cretaceous has not been fully explained.
○The abruptness of extinctions at the end of the Cretaceous and the high concentration of Ir found in clay deposited at that time have fueled the development of a new hypothesis.
○Extreme changes in daily and seasonal climates preceded the retreat of the seas back into the major ocean basins.
○Some scientists hypothesize that the extinction of the dinosaurs resulted from the effects of an asteroid collision with Earth.
○Boundary clay layers like the one between the Mesozoic and Cenozoic are used by scientists to determine the rate at which an extinct species declined.
参考答案:
1. ○4
2. ○3
3. ○2
4. ○1
5. ○1
6. ○4
7. ○1
8.○1
9. ○2
10. ○4
11. ○2
12. ○3
13. ○3
14. A simple climate change…
The abruptness of extinctions…
Some scientists hypothesize…
资料下载
2021-2024托福机经试题|答案|范文下载
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福全科备考资料大礼包
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福正价课试听课程包
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福定制备考规划
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福TPO免费模考
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福免费水平测试
发布时间:2024-02-21关注新东方在线托福
回复【XDF】获取
托福写作新题型模拟题+范文汇总[ETS发布]
发布时间:2023-07-30关注新东方在线托福
回复【XDF】获取
2023全年托福机经PDF版下载
发布时间:2023-06-17关注新东方在线托福
回复【XDF】获取
2022全年托福机经PDF版下载
发布时间:2023-06-17关注新东方在线托福
回复【XDF】获取
2022全年写作托福机经整理
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
2022年托福考后题目回忆
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
托福口语黄金80题附录音
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
新东方IBT写作网络课堂录音[.rar]
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
21天托福听力提升计划
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
不怕跑题偏题,这份写作资料请收好
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
托福阅读提分技巧锦囊妙计
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
口语拖后腿?因为你缺少这套万能句式资料
发布时间:2019-11-01关注新东方在线托福
回复【XDF】获取
攻破托福听力难关的资料包
发布时间:2023-01-13关注新东方在线托福
回复【XDF】获取
看剧学英语,经典美剧一键获取
发布时间:2019-11-01关注新东方在线托福
回复【XDF】获取
原版外刊资源合集|精心打包整理
发布时间:2019-11-01关注新东方在线托福
回复【XDF】获取
关注新东方在线托福,
回复【XDF】获取大礼包
版权及免责声明
1,"新东方在线"上的内容,包括文章、资料、资讯等, 本网注明"稿件来源:新东方在线"的,其版权 均为"新东方在线"或北京新东方迅程网络科技有限公司所有 ,任何公司、媒体、网站或个人未经授权不得转载、链接、转贴或以其他方式使用。已经得到 "新东方在线"许可 的媒体、网站,在使用时必须注明"稿件来源:新东方",违者本网站将依法追究责任。
2, "新东方在线" 未注明"稿件来源:新东方"的 文章、资料、资讯等 均为转载稿,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。如擅自篡改为 " 稿件来源:新东方 " ,本网站将依法追究其法律责任。
3,如本网转载稿涉及版权等问题,请作者见稿后在两周内与新东方在线联系。
资料下载
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关注新东方在线托福
回复【XDF】获取
关于我们 - 商务合作 - 广告服务 - 代理商区域 - 客服中心 - 在线留言 - 退换货说明 - 合作伙伴 - 联系我们 - 人员招聘 - 网站地图 - 热点关注 - 寓乐优学
新东方教育科技集团旗下成员公司 全国客服专线:400-676-3300
Copyright (C) 2000-2013 koolearn.com Inc. All rights reserved. 新东方在线 版权所有
京ICP证050421号 京ICP备05067669号 京公网安备11010802017616号 网络视听许可证0110531号