课程咨询
托福培训

扫码免费领资料

托福全科备考资料

免费水平测试及规划

托福培训

扫码关注掌握一手留学资讯

回复XDF免费水平测试

托福听力学科背景知识:天上掉钻石

2018-07-03 10:40:58来源:网络

  Benedetti and Jeanloz decided to try the obvious experiment -- squeeze liquid methane and see if they could make diamond dust.

  The liquid methane, cooled with liquid nitrogen, was placed in a diamond anvil cell and squeezed to between 10 and 50 billion pascals (gigapascals), or about 100,000 - 500,000 times atmospheric pressure. The researchers then heated the compressed methane with an infrared laser to about 2,000 to 3,000 Kelvin (3600-5400 degrees Fahrenheit).

  "It's really cool to watch," said Benedetti. "When you turn on the laser the methane turns black because of all the diamonds created. The black diamond specks float in a clear hydrocarbon liquid melted by the laser."

  Raman spectroscopy confirmed the identity of the suspended specks, as did subsequent analysis with X-ray crystallography. The flecks were diamonds interspersed with hydrocarbons.

  Jeanloz said that the high temperature breaks up methane (CH4) into carbon and hydrogen, while high pressure condenses the carbon to diamond. Other types of hydrocarbons -- doubly and triply bonded carbon -- also were produced, apparently in the cooler areas outside that illuminated by the laser.

  Jeanloz and his team plan next to see what happens to other constituents of these planets -- ammonia and water -- at high temperatures and pressures.

  Coauthors of the paper with Benedetti and Jeanloz are post-doctoral researcher Jeffrey H. Nguyen, now a scientist at Lawrence Livermore National Laboratory; geology graduate student Wendell A. Caldwell, Chinese visiting scholar Hongjian Liu and Michael Kruger, a former graduate student now in the physics department at the University of Missouri, Kansas City.

  Diamonds From The Sky

  Amherst - August 9, 1999 - In the Aug. 6 issue of the journal Science, University of Massachusetts geoscientist Stephen Haggerty contends that some of the carbon in diamonds comes from outer space.

  Haggerty argues against the long-held view that the carbon in diamond comes from the remains of plants and marine organisms as they decayed under the high temperatures and pressures of the Earth's deep interior. The invited review is titled, "A Diamond Trilogy: Superplumes, Supercontinents, and Supernovae."

  Many in the scientific community have long theorized that diamonds are primarily the result of organic materials that were dragged into the Earth's interior as one continental plate was thrust beneath another in a process called subduction.

  This theory holds that the organic material, when exposed to the extreme heat and pressure within the Earth for millions of years, produced the carbon in diamonds. But the fossil record, and the dating of diamonds, indicate that this carbon is at least three billion years older than animal and plant life.

  Haggerty suspects that some of the carbon in these diamonds was in fact produced in supernovae: the explosions of dying stars. The carbon was incorporated into our solar system, where it is the fourth most abundant element.

  This carbon, plus some that was brought to Earth on meteorites, may well be the source of diamonds, Haggerty says. The study of diamond has seen a recent burst of activity as new research methods have become available. The new theory is based on an evaluation of this scientific literature, he notes.

  Evidence lending weight to the "stardust" theory includes the antiquity of the diamonds, and the similarity of carbon isotopic ratios to those found in meteorites, Haggerty says.

  Also, the bulk composition of the Earth is chondritic; that is, similar to a class of meteorites called chondrites. Chondrites contain several forms of carbon, including diamonds older than our sun.

  "Because the early Earth was bombarded by meteorites," he says, "it is reasonable to conclude that the carbon in diamonds on the Earth is primordial."

  Scientists have shown that most diamonds are brought from the Earth's interior to its surface by volcanoes. But the volcanoes that bring forth these precious stones are much younger than the diamonds themselves, according to Haggerty.

  "This combination of old diamonds and young volcanoes indicates that the diamonds were already formed when magma brought them to the surface," said Haggerty.

  Additionally, there were two geologically short time periods during which hundreds of diamond-producing volcanoes erupted all over the Earth. One group erupted about one billion years ago, and the other 100 million years ago.

  Haggerty suggests that the eruptions were the result of the "blooming" of molten plumes from the Earth's core. The volcanoes occurred randomly around the planet, rather than along continental plate boundaries, lending support to the model of deep primary carbon.

  以上就是为大家整理的“托福听力学科背景知识:天上掉钻石”,更多精彩内容请关注新东方在线托福频道!


托福辅导

关注新东方在线托福

托福机经·Official题目练习

考前重点突破·听说读写海量资料

更多资料
更多>>
更多内容

免费获取托福备考大礼包

微信扫描下方二维码 立即领取

托福辅导
更多>>
更多公益讲座>>
更多>>
更多资料